

Why Meson

- Advantages
 - Available cryogenics
 - Available space, including a long beam line
 - Available power
- Disadvantages
 - We have to clean up the Meson East area (old fixed target experiment) and do some infrastructure maintenance

What we plan to do

- A preliminary plan
 - -The goal is to be inclusive a National facility meeting all requirements for beta=1, beta<1, and CW modules, and cavity testing
 - -EOI submitted to the Director

The Meson Detector Bldg.

Orientation

And a Bone yard

But we have done it before in Meson!

Already Making Good Progress

One months worth of work so far!

The Rewards

- Three satellite refrigerators operating as liquefiers
 - 4000 liters LHe inventory + equal gas storage + controls
 - Total power equivalent to ~ 90 Watts at 2 K
 - We are assuming 60 watts @ 2 K available
- Low temperature via vacuum pumping on helium
 - Two vacuum pumps each capable of >10 g/sec @ 20 torr (2 K)
 - Transfer lines are presently close to needed locations

Part of the cryogenic plant

Where we are going-

Conclusion

Plan for a 0th order test Oct/Nov of '05.

Cool down short High Gradient Module to 4.5K° (1m high gradient cavity)

Prepare for RF power testing

Then cool to 1.8K° if funding available

Lot of work to do but ready willing and able crew from around the lab.

Forming groups from around the Nation.